Principi numerici ed insiemistica

Minimo

Def: Sia $E \subset N$ non vuoto. E ammette minimo se $\exists m \in E : n \geq m \ \forall n \in E$. Il minimo è unico dato che altrimenti si avrebbe $m_1 \geq m_2$ ed $m_2 \geq m_1$ ossia, per antisimmetria, $m_1 = m_2$.

Principio del buon ordinamento

Qualunque sottoinsieme non vuoto di N ammette minimo. Non è possibile dimostrarlo in maniera rigorosa per un "matematico contemporaneo", la dimostrazione intuitiva è che prima o poi si troverebbe un minimo per definizione di sottoinsieme non vuoto di N. Si accetta come principio a priori, come assioma.

Combinatoria

- ·Permutazioni di n elementi n! = n(n-1)...1
- · Disposizioni di n elementi in m gruppi $D_{n,m} = \frac{n!}{(n-m)!}$
- · Combinazione di n el. in m gruppi, i gruppi con gli stessi el. in ordine diverso sono equivalenti $C_{n,m} = \binom{n}{m} = \frac{n!}{m!(n-m)!}$
- · Disposizione con ripetizione $D'_{n,m} = n^m$
- · Combinazione con ripetizione $C'_{n,m} = \binom{n+m-1}{m}$
- $\cdot \binom{n+1}{m+1} = \binom{n}{m} + \binom{n}{m+1}$

Formula di Newton

$$(a+b)^n = \sum_{m=0}^n \binom{n}{m} a^{n-m} b^m$$

 $(a+b)^n = \sum_{m=0}^n \binom{n}{m} a^{n-m} b^m$ La formula si dimostra per induzione.

Principio di induzione

Il principio di induzione è equivalente al principio di buon ordinamento, è necessario prendere uno dei due come assioma. Sia P(n) una proprietà, dipendente da un indice naturale n, tale che:

- (i) P(0) è vera
- (ii) P(n) è vera, allora P(n+1) per ogni n.
- Allora P(n) è vera per ogni n.

Dimostrazione: Sia $F = \{n \in \mathbb{N} : P(n) \text{ è falsa}\}\$, e dimostriamo che F è vuoto. Si suppone per assurdo che F non sia vuoto, ciò porta a una contraddizione. Poiché F è un sottoinsieme non vuoto di N, per il principio del buon ordinamento, esiste un minimo $m \in F$. Poiché $m \in F$, P(m) è falsa. Inoltre, $m \neq 0$ (i), $0 \notin F$). Quindi, m-1 è un numero naturale (poiché $m \geq 1$), e P(m-1) è vera (poiché $m-1 \notin F$. Ma allora, per la (ii), P(m) deve essere vera visto che si ha P(m-1+1), contraddicendo il fatto che P(m) è falsa. F è vuoto.

Disuguaglianza di Bernoulli

Si dimostra per induzione. $(1+h)^n \ge 1 + nh \ \forall n \in \mathbb{N}, h \ge -1$

Razionali

 $Q = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \setminus \{0\} \right\}$ Sono ordinati. È possibile rappresentarli graficamente tramite la nozione del teorema di Talete: Un fascio di rette parallele tagliato da due trasversali stacca su di esse segmenti a due a due proporzionali.

La rappresentazione decimale è la seguente dove m è intero: $p = mq + r_1$, ad una certa le cifre decimali inizieranno SEMPRE a ripetere un periodo. Ad un qualsiasi sviluppo decimale periodico può esser associato un numero razionale, che però non è unico: $1 = 1, \overline{0} = 0, \overline{9}$. Ad ogni numero razionale della forma p/q può essere associato uno sviluppo decimale periodico "ben formato", ovvero, con un periodo diverso da 9. Non esiste il primo num. raz. maggiore di zero.

Reali

Si definisce un'addizione + che ad ogni coppia di elementi $a,b \in R$ fa corrispondere un elemento $a+b \in R$ tale che:

- (a) $a + b = b + a \ \forall a, b \in R$ (commutativa);
- (b) $a + (b + c) = (a + b) + c \ \forall a, b, c \in R$ (associativa);
- (c) $\exists ! 0 \in R : a + 0 = a \ \forall a \in R \ (zero, l'elemento neutro per +);$
- (d) $\forall a \in R \exists ! -a \in R : a + (-a) = 0$. Si scrive anche a + (-b) = a b.

Si definisce una moltiplicazione · che ad ogni coppia di elementi $a, b \in R$ fa corrispondere un elemento $a \cdot b \in R$ tale che:

- (a) $a \cdot b = b \cdot a \quad \forall a, b \in R$ (commutativa);
- (b) $a \cdot (b \cdot c) = (a \cdot b) \cdot c \quad \forall a, b, c \in R \text{ (associativa)};$
- (c) $\exists ! 1 \in R : a \cdot 1 = a \quad \forall a \in R \text{ (uno, l'elemento neutro per } \cdot);$
- (d) $\forall a \in R$ diverso da zero, $\exists! a^{-1} \in R: a \cdot a^{-1} = 1$. Si scrive anche $a^{-1} = \frac{1}{a} e a \cdot b^{-1} = \frac{a}{b}$;
- (e) $a \cdot (b+c) = a \cdot b + a \cdot c \quad \forall a, b, c \in R$ (distributiva).

Si definisce un ordinamento totale, ossia una relazione \leq tra coppie di elementi di R tale che per ogni $a,b,c\in R$ si ha:

- (a) Se $a \le b$ e $a \le c$, allora $a \le c$ (transitiva);
- (b) Se $a \le b$ e $b \le a$, allora a = b (antisimmetrica);
- (c) Si ha sempre $a \leq a$ (riflessiva);
- (d) Per ogni coppia $a \in b \in R$, si ha $a \leq b$ oppure $b \leq a$ (totale);
- (e) Se $a \le b$, allora $a + c \le b + c$ (cancellazione);
- (f) Se $0 \le a$ e $0 \le b$, allora $0 \le a \cdot b$ (positività).
- Assioma di Completezza, senza di esso si dice CORPO ORDINATO. R è un corpo ordinato completo.

MaxMinSupInfMaggMin

Sia $E \subset E$. E ha massimo se $\exists x \in R : \forall y \in E, y \leq x, x \in E$. Il numero reale x si indica anche con max E.

E ha minimo se $\exists x \in R: \forall y \in E, x \leq y, x \in E$ Il numero reale x si indica anche con min E.

Si definisce M(E), l'insieme dei maggioranti di E, come $M(E) = \{x \in R : x \geq y \ \forall y \in E\}$

Si definisce m(E), l'insieme dei minoranti di E, come $m(E) = \{x \in R : x \leq y \ \forall y \in E\}$

E è limitato superiormente se $\exists M \in R : x \leq M \quad \forall x \in E$; equivalentemente, se $M(E) \neq \emptyset$.

E è limitato inferiormente se $\exists m \in R : m \leq x \quad \forall x \in E$; equivalentemente, se $m(E) \neq \emptyset$.

E è limitato se è limitato sia superiormente che inferiormente.

Se E è limitato superiormente, definiamo estremo superiore di E come il minimo dei maggioranti: sup $E = \min M(E)$

Se E è limitato inferiormente, definiamo estremo inferiore di E come il massimo dei minoranti: inf $E = \max m(E)$

Assioma di Completezza

Se $E \subseteq R$ è limitato superiormente, allora esiste il minimo dei maggioranti di E.

Se $E \subseteq R$ è limitato inferiormente, allora esiste il massimo dei minoranti di E.

Insieme induttivo

 $E \subseteq R$ si dice insieme induttivo se soddisfa le seguenti condizioni:

- $0 \in E$,
- se $x \in E$, allora $x + 1 \in E$.

N si definisce come l'intersezione di tutti gli insiemi induttivi.

Proprietà archimedea

Sia x > 0 un numero reale e sia E l'insieme di tutti i suoi multipli nx, con $n \in N$. Allora, E non è limitato superiormente.

<u>Dimostrazione</u>: Si suppone per assurdo che E sia limitato superiormente, e sia $S = \sup E$. Allora, $S - \frac{x}{2}$ non è un maggiorante di E, e deve esistere un elemento $nx \in E$ tale che $nx > S - \frac{x}{2}$. Ma allora, $(n+1)x > S + \frac{x}{2} > S$, il che è impossibile.

Densità di Q in R

Siano x e y numeri reali, con y < x. Allora esiste un numero razionale $\frac{p}{q}$ tale che $y < \frac{p}{q} < x$

<u>Dimostrazione:</u> Per la proprietà archimedea, esistono numeri naturali q tali che $q > \frac{1}{x-y}$, ossia tali che qx > qy+1; se ne sceglie uno qualsiasi. Per la proprietà archimedea, esistono numeri naturali p tali che p > qy; per il principio del buon ordinamento, si può prendere il minimo di tali p, quindi si ha $p > qy \ge p-1$ ossia $qy+1 \ge p > qy$ che diventa per ciò detto prima qx > p > qy. Si divide per q.