Notifiche
Cancella tutti

Teorema di Pitagora

  

1
CAPTURE 20250315 174258
Autore
Etichette discussione
4 Risposte



3

definisci uno dei cateti x e l'ipotenusa 5/4x

svolgi l'equazione 3*(5\4x)=120cm

x=cateto=32cm

ipotenusa = 32*5\4=40cm

da qui con Euclide chiamando h il punto d'incontro delle proiezioni sull'ipotenusa bc trovi che 32^2=40*hc

hc=25,6cm

bh=40-25,6=14,4cm



3
image

AB = ipotenusa;

AB = lato del triangolo equilatero che ha perimetro uguale a 120 cm;

Lato = 120 / 3  = 40 cm; (ipotenusa AB);

AB = 5/4 del cateto maggiore BC;

AB = 5 parti;  40 / 5 = 8 cm (una parte);

BC = 4 parti; BC = 4 * 8 = 32 cm; 

Per trovare BC si divida 40 per 5 e si moltiplica per 4:

BC = 40 * 4/5 = 32 cm;

Conosci il primo teorema di Euclide?

BH : BC = BC : AB;

BH = BC^2 / AB = 32^2 /40 ;

BH = 1024 / 40 = 25,6 cm; (proiezione di BC sull'ipotenusa).

AH = 40 - 25,6 = 14,4 cm; (proiezione di AC sull'ipotenusa).

 

Possiamo anche trovare il cateto minore AC con Pitagora;

AC = radicequadrata(40^2 - 32^2) = radice(1600 - 1024);

AC = radice(576) = 24 cm;

AH : AC = AC = AB;

AH : 24 = 24 : 40

AH = 24^2 / 40 = 576 / 40 = 14,4 cm, (proiezione di AC).

@alessiamirabella     ciao.

Se non conosci Euclide puoi trovare l'area del triangolo usando i due cateti,  poi puoi trovare l'altezza CH che cade sull'ipotenusa :

Area =  32 * 24 / 2 = 384 cm^2;

CH = 384 * 2 / AB = 384 * 2 / 40 = 19,2 cm;

trovi AH con Pitagora nel triangolino AHC; AC è l'ipotenusa;

AH = radice(24^2 - 19,2^2) = radice(207,36) = 14,4 cm; (proiezione di AC).

@alessiamirabella ciao.

@mg ....Felice weekend



2
image
image

BC = 120/3 = 40 cm

AB = 40*3/5 = 24 cm

AC = 40*4/5 = 32 cm 

Ignorando Euclide : 

altezza AH = AB*AC/BC = 24*32/40 = 19,20 cm

BH = √24^2-19,2^2 = 14,40 cm 

CH = 40-14,40 = 25,60 cm 
 



1
CAPTURE 20250315 174258

===========================================================

Lato del triangolo equilatero l=2p3=1203=40cm.

Triangolo rettangolo:

ipotenusa i=40cm;

cateto maggiore C=40:54=408×451=8×4=32cm;

proiezione del cateto maggiore pC=C2i=32240=102440=25,6cm (dal 1° teorema di Euclide);

proiezione cateto minore pc=ipC=4025,6=14,4cm. 



Risposta
SOS Matematica

4.6
SCARICA