Notifiche
Cancella tutti

[Risolto] Sistemi lineari

  

0

Un cocktail analcolico viene preparato con succo di mirtillo e di pompelmo. La seguente tabella è riferita a 1 dL di succo.

Trova le quantità dei due succhi affinché il cocktail abbia 450 kcal e 33 g di proteine.
$[7 \mathrm{dL} ; 5 \mathrm{dL}]$

 

Per ottenere 10 kg di cereali biologici a 3,50 €/kg uniamo farro che costa 3,95 €/kg e orzo che costa 2,80 €/kg.
Quanti kilogrammi di farro e orzo dobbiamo unire?
[6,09 kg; 3,91 kg]

 

Mi serve aiuto con questi 3 problemi. Grazie mille a chiunque riesca anche solo a farne 1!

776DC51A F89A 4345 BD9D EA9492393C3F

 

Autore

Grazieee milleee

Etichette discussione
.
4 Risposte



1

50x+20y = 450

4x+y = 33

50x+20(33-4x) = 450

30x = 660-450

mirtillo x = 210/30 = 7 

pompelmo y = 33-28 = 5 

 

3,95x+2,80(1-x) = 3,50

1,15 x = 0,70

x = 0,70/1,15 = 0,609 p.u. (farro in per unità)

y = 1-x = 0,391 p.u. (orzo in per unità) 

per un mix di 10 kg :

# 6,09 kg di farro

# 3,91 kg di orzo 



1

x = mirtillo; y = pompelmo.

50 x + 20 y = 450;  (chilocalorie)  (1)

4x + y = 33; (grammi proteine);  (2)

 

y = 33 - 4x; dalla  (2) sostituiamo nella (1);

50x + 20 * (33 - 4x) = 450;

50 x - 80 x = 450 - 660;

30 x = 210;

x = 210 / 30 = 7 decilitri; (mirtillo).

y = 33 - 4 * 7 = 5 dL, (pompelmo). 

Un esercizio per volta, dice il regolamento!

@afhh  ciao.

 

@ireneporroooooooooo perché mi voti negativamente? Che cosa non ti va?



0

@afhh

Ciao, di nuovo. Ti svolgo il primo:

Chiamo con x= quantità di succo di mirtillo; y = quantità di succo di pompelmo

Deve essere:

{50x+20y=450 (chilocalorie)

{4x+y=33 (g di proteine)

---------------------------------

{5x+2y=45

{4x+y=33

per sostituzione: y=33-4x

5x+2(33-4x)=45-------> 5x+66-8x=45-----> -3x=-21  ---->x=7 dl di succo di mirtillo

y=33-4*7=33-28 ---------> y= 5 dl di succo di pompelmo



0

SI TRATTA DI DUE DIVERSE VERSIONI DEL PROBLEMA DELLE MISCELE.
L'esercizio 323 chiede il calcolo di un partitore; invece 322 e 324 presentano, sotto diverse spoglie, lo stesso problema.
Si deve determinare, se è possibile, una miscela M di due prodotti A e B (mirtillo/pompelmo; ingrediente1/2) ciascuno dei quali gode, in diverse quantità specifiche per unità di prodotto, delle stesse due proprietà misurabili P e Q (kcal/proteine; carboidrati/proteine), in proporzioni tali che M goda di P e Q in quantità assolute prescritte.
Schematizzando, con i dati nel formato {prodotto, P, Q}
* {A, a, p} proprietà specifiche
* {B, b, q} proprietà specifiche
* {M, m, r} quantità assolute
si hanno, per la miscela, le quantità (x, y) dei due componenti
* (a*x + b*y = m) & (p*x + q*y = r) ≡
≡ (x = (b*r - m*q)/(b*p - a*q)) & (y = (m*p - a*r)/(b*p - a*q))
NOTA
Ovviamente se il denominatore s'azzera, cioè se vale la proporzione "a : b = p : q", quello specifico problema risulta impossibile.
==============================
323) Sono dati
* i prezzi (a = 2.80 < b = 3.50 < c = 3.95) €/kg
* di tre materiali (p: orzo; q: miscela; r: farro)
e si chiedono le frazioni (x, 1 - x) dei due prezzi estremi per ottenere quello intermedio, cioè
* a*x + c*(1 - x) = b ≡
≡ x = (c - b)/(c - a)
Con i valori dati si ha
* x = (3.95 - 3.50)/(3.95 - 2.80) = 9/23
* 1 - x = 14/23
Poiché i prezzi sono al chilo, per avere 10 kg di miscela si devono decuplicare le frazioni; approssimando al grammo si ha
* 90/23 ~= 3.913 kg
* 140/23 ~= 6.087 kg
==============================
322) Sono dati
* {mirtillo, 50, 4}
* {pompelmo, 20, 1}
* {cocktail, 450, 33}
da cui
* x = (b*r - m*q)/(b*p - a*q) = (20*33 - 450*1)/(20*4 - 50*1) = 7
* y = (m*p - a*r)/(b*p - a*q) = (450*4 - 50*33)/(20*4 - 50*1) = 5
------------------------------
324) Sono dati
* {ingrediente1, 50, 25}
* {ingrediente2, 72, 36}
* {piatto composto, 65, 30}
dove si verifica la proporzione "50 : 72 = 25 : 36", quindi il problema risulta impossibile.

 



Risposta
SOS Matematica

4.6
SCARICA