determina l’equazione della retta che interseca l asse y nel punto di ordinata -3 e che appartiene al fascio generato dalle rette di equazione 2x-y+2=0 e -2x+y=0
determina l’equazione della retta che interseca l asse y nel punto di ordinata -3 e che appartiene al fascio generato dalle rette di equazione 2x-y+2=0 e -2x+y=0
Le due rette hanno stesso coefficiente angolare, m=2 e quindi sono tra loro parallele.
Il fascio di rette generato è quindi un fascio improprio di equazione:
y= 2x+q
Imponendo la condizione di appartenenza del punto A(0, - 3) al fascio determino il valore di q. Quindi:
-3 = 2*0 + q
Da cui si ricava: q= - 3
L'equazione della retta cercata è: y= 2x - 3
VEDO CINQUE DOMANDE PRATICAMENTE IDENTICHE ai link
http://www.sosmatematica.it/forum/postid/63181/
e poi ai "postid" 63183, 63186, 63189, 63190
tutte sul fascio di rette: generarlo, classificarlo, individuarne rette specifiche.
Può essere che semplicemente tu non abbia voglia di fare i tuoi compiti?
Oppure che ti serva un mini promemoria da stampare e tenere sott'occhio?
Sono buono e opto per la seconda ipotesi (devo pur trovarmi qualcosa da fare).
==============================
Uso i simboli del PROMEMORIA al link> http://www.sosmatematica.it/forum/postid/63181/
==============================
Esercizio
Dalle generatrici
* 2*x - y + 2 = 0
* - 2*x + y = 0
il cui sistema è impossibile e che quindi sono parallele con pendenza m = 2, si ha il fascio improprio
* r(h) ≡ y = 2*x + h
la cui retta con intercetta h = - 3 è
* r(- 3) ≡ y = 2*x - 3