y = a·4^x + b·2^x + c
passa per i punti:[-1, 3/4] ; [2, 6] ; [-2, 21/16]
{3/4 = a·4^(-1) + b·2^(-1) + c
{6 = a·4^2 + b·2^2 + c
{21/16 = a·4^(-2) + b·2^(-2) + c
------------------------------
{a/4 + b/2 + c = 3/4
{16·a + 4·b + c = 6
{a/16 + b/4 + c = 21/16
-------------------------------
{a + 2·b + 4·c = 3
{16·a + 4·b + c = 6
{a + 4·b + 16·c = 21
Risolvo ed ottengo: [a = 1 ∧ b = -3 ∧ c = 2]
y = 1·4^x + (-3)·2^x + 2
y = 2^(2·x) - 3·2^x + 2
-------------------------
Disequazione:
(2^(2·x) - 3·2^x + 2 + 3·2^x)/2^x ≥ 3
(2^(2·x) + 2)/2^x ≥ 3
2^(2·x) ≥ 3·2^x - 2
2^x = t
t^2 - 3·t + 2 ≥ 0
(t - 1)·(t - 2) ≥ 0
t ≤ 1 ∨ t ≥ 2
2^x ≤ 1 ∨ 2^x ≥ 2
x ≤ 0 ∨ x ≥ 1
-------------
Α = 1/2·b·h = 1/2·1·6 = 3