Notifiche
Cancella tutti

Problema

  

0

Un terreno, a forma di quadrilatero, è costituito da due pezzi triangolari aventi un lato in comune. in una mappa il terreno è stato rappresentato come in figura. Ricava i dati direttamente dal disegno e calcola l’area del terreno. 

image
Autore
3 Risposte



2

p1 = (25+39+40)/2 = 52

A1 = √p1(p1-a)(p1-b)(p1-c) = √52(52-25)(52-39)(52-40) = 468 m^2

p2 = (25+29+36)/2 = 45

A2 = √p2(p2-a')(p2-b')(p2-c') = √45(45-25)(45-29)(45-36) = 360 m^2

A = A1+A2 = 468+360 = 828 m^2



1

 

per ognuno dei due triangoli la soluzione piu' conveniente viene dalla formula di erone

a = Radq [p * (p-a) * (p-b) * p-c) ]

con p semiperimetro, a, b, c lati

il resto e' calcolo



0

Semiperimetro triangolo $T_1= \frac{39~+40~+25}{2} = 52~cm$;

semiperimetro triangolo $T_2= \frac{36~+29~+25}{2} = 52~cm$;

per calcolare l'area del quadrilatero applica la $formula~ di~ Erone$ come segue:

$A= \sqrt{52(52-40)(52-39)(52-25)}~+\sqrt{45(45-36)(45-29)(45-25)} = 828~m^2$.

 



Risposta
SOS Matematica

4.6
SCARICA