\[\operatorname{Cov}{[W,X]} = \operatorname{E}{[WX]} - \operatorname{E}{[W]}\operatorname{E}{[X]} \:\Bigg|_{\substack{W = X + Y}} \implies\]
\[\operatorname{Cov}{[W,X]} = \operatorname{Cov}{[X + Y,X]} = \operatorname{Cov}{[X,X]} + \operatorname{Cov}{[Y,X]} = \operatorname{Var}{[X]} + \operatorname{Cov}{[Y,X]} =\]
\[= \frac{3}{16} + \frac{1}{24} = \frac{11}{48}\,.\]
\[\operatorname{Cov}{[W,Y]} = \operatorname{E}{[WY]} - \operatorname{E}{[W]}\operatorname{E}{[WY]}\:\Bigg|_{\substack{W = X + Y}} \implies\]
\[\operatorname{Cov}{[W,Y]} = \operatorname{Cov}{[X + Y,Y]} = \operatorname{Cov}{[X,Y]} + \operatorname{Cov}{[Y,Y]} = \operatorname{Cov}{[X,Y]} + \operatorname{Var}{[Y]} =\]
\[= \frac{1}{24} + \frac{29}{36} = \frac{61}{72}\,.\]
\[\operatorname{Cov}{[W,X - Y]} = \operatorname{E}{[W(X - Y)]} - \operatorname{E}{[W]}\operatorname{E}{[X - Y]} \:\Bigg|_{\substack{W = X + Y}} \implies\]
\[\operatorname{Cov}{[W,X - Y]} = \operatorname{Cov}{[X + Y,X - Y]} = \operatorname{Cov}{[X,X - Y]} + \operatorname{Cov}{[Y,X - Y]} \implies\]
\[\operatorname{Cov}{[W,X - Y]} = \operatorname{Cov}{[X,X]} - \operatorname{Cov}{[X,Y]} + \operatorname{Cov}{[Y,X]} - \operatorname{Cov}{[Y,Y]} = \frac{7}{48} - \frac{55}{72} = -\frac{89}{144}\,.\]
(a meno di errori di calcolo)