===================================================
71)
$\dfrac{3}{2}x + \dfrac{5-x}{12} = \dfrac{(2x-1)5}{6}-\dfrac{x(x+1)}{4}$
$\dfrac{3}{2}x + \dfrac{5-x}{12} = \dfrac{10x-5}{6}-\dfrac{x^2+x}{4}$
mcm= 12:
$18x +5-x = 2(10x-5) -3(x^2+x)$
$18x +5 -x = 20x -10 -3x^2 -3x$
$17x +5 = 17x -10 -3x^2$
$3x^2 \cancel{+17x} \cancel{-17x} = -10 -5$
$3x^2 = -15$
$x^2 = -5$
$\sqrt{x^2} = \sqrt5 ×\sqrt{-1}$
per cui nei complessi $ℂ:$
$x= \pm\approx{2,236068i}.$