a)
$b=\sqrt{d^2-h^2}=\sqrt{12,5^2-10^2}=\sqrt{156,25-100}=\sqrt{56,25}=7,5~dm$
$B+b=\frac{2*A}{h}=\frac{2*195}{10}=39~dm$
$B=(B+b)-b=39-7,5=31,5~dm$
b)
$D=\sqrt{h^2+B^2}=\sqrt{10^2+31,5^2}=\sqrt{100+992,25}=\sqrt{1092,25}=33~dm$
c)
La proiezione del lato obliquo sulla base maggiore misura:
$p_l=B-b=31,5-7,5=24~dm$
$l=\sqrt{h^2+p_l^2}=\sqrt{10^2+24^2}=\sqrt{100+576}=\sqrt{676}=26~dm$
$p=B+b+h+l=39+10+26=75~dm$