Notifiche
Cancella tutti

mi aiutereste??

  

0
IMG 8597
Autore
2 Risposte



2

Sia γ una circonferenza di centro C, raggio r e F un punto interno a γ. Considera un punto Q sulla circonferenza e indica con P il punto d'intersezione della retta CQ e dell'asse del segmento QF. Dimostra che, comunque venga scelto Q, il punto P appartiene a una stessa ellisse avente fuochi nei punti C e F; specifica qual è la misura dell'asse maggiore di tale ellisse.

Ellisse dimostrazione geometrica



0

l'Intelligenza artificiale fornisce questo risultato, che é molto chiaro.

Final Answer The point P lies on an ellipse with foci C and F, and the length of the major axis is r.

Given a circle y with center C and radius r, and a fixed point F inside the circle. For any point Q on the circumference, we consider the line CQ (a radius) and the perpendicular bisector of QF. The intersection of these two lines is point P. We need to show that P lies on an ellipse with foci C and F, and determine the length of the major axis of this ellipse.

  1. Properties of the Perpendicular Bisector: Since P is on the perpendicular bisector of QF, it follows that PQ=PF.
  2. Collinearity on CQ: Since P is on the line CQ, the points C, P, and Qare collinear, and we have PC+PQ=CQ=r
  3. Equating Distances: From the collinearity, PQ=r−PC. Combining this with the perpendicular bisector property PQ=PF, we get PF=r−PC.
  4. Sum of Distances: Adding PC and PF, we find PC+PF=PC+(r−PC)=r.

This shows that the sum of the distances from P to the foci C and F is constant and equal to r, which is the definition of an ellipse with foci at C and F. The major axis of an ellipse is the constant sum of the distances from any point on the ellipse to the two foci, which in this case is r.

Thus, the length of the major axis of the ellipse is r.

 



Risposta
SOS Matematica

4.6
SCARICA