Thanks
Thanks
=================================================
Valore attuale rendita posticipata:
$V=R·\dfrac{1-\left(1+r\right)^{-n}}{r}$
$V=7500·\dfrac{1-\left(1+\frac{6,35}{100}\right)^{-10}}{\frac{6,35}{100}}$
$V=7500·\dfrac{1-\left(1+0,0635\right)^{-10}}{0,0635}$
$V=7500·\dfrac{1-1,0635^{-10}}{0,0635}$
$V=54296,73\,euro.$
Come prima
R = 7500, n = 10, i = 0.0635
M = R/i * (1 - (1 + i)^(-n)) = 7500/0.0635 * (1 - 1.0635^(-10)) = 54296.73 euro
n = 10
n = 10
R = 7500
R = 7500
i = 0.0635
i = 0.063500
M = R/i*(1 - (1+i)^(-n))
M = 5.4297e+04
format long
M = R/i*(1 - (1+i)^(-n))
M = 54296.73173238969