$ \displaystyle\lim_{x \to + \infty} \left( \frac{x+α}{x+1} \right)^x = $
$ \displaystyle\lim_{x \to + \infty} \left( \frac{x+1+α-1}{x+1} \right)^x = $
$ \displaystyle\lim_{x \to + \infty} \left( 1+ \frac {α-1}{x+1} \right)^{x+1-1} = $
$ \displaystyle\lim_{x \to + \infty} \left( 1+ \frac {α-1}{x+1} \right)^{x+1} \cdot \left( 1+ \frac {α-1}{x+1} \right)^{-1} = e^{α-1} \cdot 1 = e^{α-1} $
Risolviamo la disequazione
$ e^{α-1} > \sqrt{e} \; ⇒ \; α-1 > \frac{1}{2} \; ⇒ \; α > \frac{3}{2} $