Il limite ha forma determinata:
(2·COS(x) + COS(2·x))/(SIN(x) + 3·SIN(2·x))
(2·COS(pi/3) + COS(2·(pi/3)))/(SIN(pi/3) + 3·SIN(2·(pi/3)))=
=(1 + (- 1/2))/(√3/2 + 3·(√3/2))=
=(1/2/(2·√3))
Quindi:
LIM((2·COS(x) + COS(2·x))/(SIN(x) + 3·SIN(2·x)))= √3/12
x → pi/3
$ = \frac{2 cos(\frac{\pi}{3}) + cos(\frac{2\pi}{3})}{sin(\frac{\pi}{3})+3sin(\frac{2\pi}{3})} = \frac{1 - \frac{1}{2}}{\frac{\sqrt{3}}{2}+3\frac{\sqrt{3}}{2}} = \frac{1}{4\sqrt{3}} = \frac{\sqrt{3}}{12} $