Spiegare il ragionamento. Risolvere SENZA teoremi.
Spiegare il ragionamento. Risolvere SENZA teoremi.
Forma indeterminata del tipo ∞-∞
Applichiamo la proprietà dei logaritmi
$ = \displaystyle\lim_{x \to +\infty} log_3 \left(\frac{x^2-4}{9x^2-1}\right) = $
la funzione logaritmo è una funzione continua, possiamo quindi operare come segue
$ = log_3 \displaystyle\lim_{x \to +\infty} \frac{x^2-4}{9x^2-1} = $
dividiamo numeratore e denominatore per x^2
$ = log_3 \displaystyle\lim_{x \to +\infty} \frac{1-4\frac{1}{x^2}}{9-\frac{1}{x^2}} = log_3 \left(\frac{1}{9} \right) = - 2$