$ \displaystyle\lim_{x \to +\infty} \left( \frac{2x-1}{2x+3} \right)^{x+1} = $
$ = \displaystyle\lim_{x \to +\infty} \left( \frac{2x+3 -4}{2x+3} \right)^{x+1} = $
$ = \displaystyle\lim_{x \to +\infty} \left( 1 - \frac{4}{2x+3} \right)^{x+1} = $
Poniamo $ t = \frac{2x+3}{4} \; ⇒ \; x = \frac{4t+3}{2} \; ⇒ \; x+1 = \frac{4t+5}{2}$
Inoltre se x → +∞ allora t → +∞
$ = \displaystyle\lim_{t \to +\infty} \left( 1 - \frac{1}{t} \right)^{2t + \frac{5}{2}} = $
$ = \displaystyle\lim_{t \to +\infty} \left[ \left( 1 - \frac{1}{t} \right)^t \right]^2 + \left( 1 - \frac{1}{t} \right)^{\frac{5}{2}} = e^{-2} \cdot 1 = \frac{1}{e^2} $