Argomentare e dimostrare.
Argomentare e dimostrare.
Sappiamo inoltre che, laddove è definita la funzione,:
essendo a > 0 per ipotesi.
Per il teorema dei limiti delle funzioni monotone possiamo concludere
$ \displaystyle\lim_{x \to 0^+} log_a (x) = inf\, log_a(x) = -\infty$
$ \displaystyle\lim_{x \to +\infty} log_a (x) = sup\, log_a(x) = +\infty$