a.
per parti
$ \int cos^2 x \, dx = sin x cos x + \int sin^2 x = sin x cos x + \int 1- cos^2 x = sin x cos x + x - \int cos^2 \,dx $ cioè
$ 2 \int cos^2 x \, dx = x + sin x cos x $
$ \int cos^2 x \, dx = \frac {x + sin x cos x}{2} $
b.
$ \int cos^2 x \, dx = \int \frac{1+cos 2x}{2} \, dx = \frac{1}{2}x + \frac{1}{2}\int cos 2x \, dx = $
per sostituzione $ t = 2x \; ⇒ \; \frac {dt}{2} = dx $
$ = \frac{1}{2}x + \frac{1}{4}\int cos t \, dt = \frac{1}{2}x + \frac{1}{4} sin t + c = \frac{1}{2}x + \frac{1}{4} sin 2x + c = \frac{1}{2}x + \frac{1}{4} 2sin x cos x + c = $
$ = \frac{1}{2}x + \frac{1}{2} sin x cos x + c $
c.
$ \int cos^2 x \, dx = \int 1-sin^2 x \, dx = x - \int sin^2 x \, dx = x - \frac{1}{2} ( x - \frac{1}{2} 2sinx cosx) + c = $
$ = \frac{1}{2}( x + sin x cos x ) + c $