Notifiche
Cancella tutti

[Risolto] Integrali

  

1

La curva riportata in figura è il grafico di una funzione $f(x)$, definita nell'intervallo $[-1 ; 6]$, derivabile e con derivata seconda continua.
a. Dimostra che tra due punti stazionari di $f(x)$ c'è almeno uno zero della sua derivata seconda. Stabilisci, inoltre, qual è il minimo numero di flessi di $f(x)$ compatibile con le ipotesi.

Considera poi la funzione $F(x)=\int_0^x f(t) d t$, primitiva di $f(x)$ che si annulla in $x=0$.
b. Le aree di $A_1, A_2$ e $A_3$ valgono rispettivamente $\frac{5}{4}, \frac{27}{4} \mathrm{e} \frac{27}{2}$. Calcola $F(-1), F(3)$ e $F(6)$.
c. Calcola il limite $\lim _{x \rightarrow 3} \frac{27+4 F(x)}{x^2-x-6}$.

6B318FD3 5704 40EF 8B2B 00D991A2D56D

Aiutoooo in questo esercizio 

Autore
1 Risposta



1
IMG 2365
IMG 2363
IMG 2364



Risposta
SOS Matematica

4.6
SCARICA