S (x-1)/(1+sqrt(x)) dx
Da svolgere X SOSTITUZIONE!
Spiegare i passaggi.
S (x-1)/(1+sqrt(x)) dx
Da svolgere X SOSTITUZIONE!
Spiegare i passaggi.
$ \int \frac{x-1}{1+\sqrt{x}} \, dx = $
Poniamo $ t = \sqrt{x} \; ⇒ \; dt = \frac{1}{2\sqrt{x}} dx \; ⇒ \; 2t\,dt = dx$
= $ \int \frac{t^2-1}{t+1} \, 2t \, dx = $
= $ \int (t-1) \, 2t \, dx = $
= $ 2\int t^2 - t) \, dx = $
= $ \frac{2}{3} t^3 - t^2 + c = $
= $ \frac{2}{3} \sqrt{x^3} - x + c $