Un quadrilatero ABCD è diviso dalla diagonale AC in due triangoli rettangoli in B e in D. La diagonale BD è bisettrice dell’angolo Ab^CDimostrare che ABCD è inscrivibile in una circonferenza e che il triangolo ACD è isoscele.
Un quadrilatero ABCD è diviso dalla diagonale AC in due triangoli rettangoli in B e in D. La diagonale BD è bisettrice dell’angolo Ab^CDimostrare che ABCD è inscrivibile in una circonferenza e che il triangolo ACD è isoscele.