[(1/6)3×(1/6)2×1/6]2:{[(1/6)3]2}0:[(1/6)10×1/6] R.1/6
[(1/6)3×(1/6)2×1/6]2:{[(1/6)3]2}0:[(1/6)10×1/6] R.1/6
[(1/6)^3 x (1/6)2 x (1/6)]^2 = [(1/6)^6]^2 = (1/6)^12; (regole delle potenze di uguale base);
[(1/6)^3]^2}^0 = [(1/6)6]^0 = (1/6)^0 = 1;
[(1/6)^3 x (1/6)2 x (1/6)]^2 : {[(1/6)^3]^2}^0 : [(1/6)^10 × 1/6] =
= (1/6)^12 : (1/6)^0 : [(1/6)^10 × 1/6] =
= (1/6)^12 : 1 : (1/6)^11 =
= (1/6)^12 : (1/6)^11 = [12 - 11 = 1; si sottraggono gli esponenti].
= (1/6)^1 = 1/6.
Ciao @andreag
[(1/6)3×(1/6)2×1/6]2:{[(1/6)3]2}0:[(1/6)10×1/6] R.1/6
=======================================================
$\small \left[\left(\dfrac{1}{6}\right)^3·\left(\dfrac{1}{6}\right)^2·\dfrac{1}{6}\right]^2 : \left\{\left[\left(\dfrac{1}{6}\right)^3\right]^2\right\}^0 : \left[\left(\dfrac{1}{6}\right)^{10}·\dfrac{1}{6}\right]= $
ti faccio tutti i passaggi ma per la graffa elevata a zero puoi anche mettere subito 1, comunque:
$\small =\left[\left(\dfrac{1}{6}\right)^{3+2+1}\right]^2 : \left(\dfrac{1}{6}\right)^{3·2·0} : \left(\dfrac{1}{6}\right)^{10+1}= $
$\small =\left[\left(\dfrac{1}{6}\right)^6\right]^2 : \left(\dfrac{1}{6}\right)^0 : \left(\dfrac{1}{6}\right)^{11}= $
$\small =\left(\dfrac{1}{6}\right)^{6·2} : \left(\dfrac{1}{6}\right)^0 : \left(\dfrac{1}{6}\right)^{11}= $
$\small =\left(\dfrac{1}{6}\right)^{12} : \left(\dfrac{1}{6}\right)^0 : \left(\dfrac{1}{6}\right)^{11}= $
$\small =\left(\dfrac{1}{6}\right)^{12-0-11} = $
$\small =\left(\dfrac{1}{6}\right)^1 = \dfrac{1}{6}$