Notifiche
Cancella tutti

[Risolto] Espressione con numeri relativi, frazioni e potenze.

  

0

-{(1/4-1/2)²:[-1/16+(5/2-3)²]}:{[(4/3-2)²-(1-5/6)²]:(-1/2)²}×(-5/3)×3 = +1

Autore
Etichette discussione
2 Risposte



1
IMG 1574



0

$-\left\{\left(\frac{1}{4}-\frac{1}{2}\right)^2÷\left[-\frac{1}{16}+\left(\frac{5}{2}-3\right)^2\right]\right\}÷\left\{\left[\left(\frac{4}{3}-2\right)^2-\left(1-\frac{5}{6}\right)^2\right]÷\left(-\frac{1}{2}\right)^2\right\}·\left(-\frac{5}{\cancel3_1}\right)·\cancel3^1=$

 $=-\left\{\left(\frac{1-2}{4}\right)^2÷\left[-\frac{1}{16}+\left(\frac{5-6}{2}\right)^2\right]\right\}÷\left\{\left[\left(\frac{4-6}{3}\right)^2-\left(\frac{6-5}{6}\right)^2\right]÷\frac{1}{4}\right\}·(-5)=$

$= -\left\{\left(-\frac{1}{4}\right)^2 : \left[-\frac{1}{16}+\left(-\frac{1}{2}\right)^2\right]\right\} : \left\{\left[\left(-\frac{2}{3}\right)^2-\left(\frac{1}{6}\right)^2\right] · 4\right\}·(-5)=$

$= -\left\{\frac{1}{16} : \left[-\frac{1}{16}+\frac{1}{4}\right]\right\} : \left\{\left[\frac{4}{9}-\frac{1}{36}\right] · 4\right\}·(-5)=$

$= -\left\{\frac{1}{16} : \left[\frac{-1+4}{16}\right]\right\} : \left\{\left[\frac{16-1}{36}\right] · 4\right\}·(-5)=$

$= -\left\{\frac{1}{16} : \frac{3}{16}\right\} : \left\{\frac{\cancel{15}^5}{\cancel{36}_{12}} · 4\right\}·(-5)=$

$= -\left\{\frac{1}{16} · \frac{16}{3}\right\} : \left\{\frac{5}{12} · 4\right\}·(-5)=$

$= -\left\{\frac{1}{\cancel{16}_1} · \frac{\cancel{16}^1}{3}\right\} : \left\{\frac{5}{\cancel{12}_3} · \cancel4^1\right\}·(-5)=$

$= -\left\{\frac{1}{1} · \frac{1}{3}\right\} : \left\{\frac{5}{3} · 1\right\}·(-5)=$

$= -\frac{1}{3} : \frac{5}{3} ·(-5)=$

$= -\frac{1}{3} · \frac{3}{5} ·(-5)=$

$= -\frac{1}{\cancel3_1} · \frac{\cancel3^1}{5} ·(-5)=$

$= -\frac{1}{1}·\frac{1}{5}·(-5) =$

$= -\frac{1}{\cancel5_1}·(-\cancel5^1)=$

$= -1·(-1) =$

$= +1$



Risposta
SOS Matematica

4.6
SCARICA