Gentilmente la 267
Gentilmente la 267
============================================================
$\left[\dfrac{3}{4}+\dfrac{1}{12}-\left(\dfrac{1}{2}-\dfrac{1}{5}\right)-\dfrac{4}{9}\right] : x = x : \left[\dfrac{11}{3}-\left(\dfrac{1}{5}+\dfrac{4}{15}\right)\right]$
$ \left[\dfrac{3}{4}+\dfrac{1}{12}-\left(\dfrac{5-2}{10}\right)-\dfrac{4}{9}\right] : x = x : \left[\dfrac{11}{3}-\left(\dfrac{3+4}{15}\right)\right]$
$ \left[\dfrac{3}{4}+\dfrac{1}{12}-\dfrac{3}{10}-\dfrac{4}{9}\right] : x = x : \left[\dfrac{11}{3}-\dfrac{7}{15}\right]$
$ \left[\dfrac{135+15-54-80}{180}\right] : x = x : \left[\dfrac{55-7}{15}\right]$
$\dfrac{\cancel{16}^4}{\cancel{180}_{45}} : x = x : \dfrac{\cancel{48}^{16}}{\cancel{15}_5} $
$\dfrac{4}{45} : x = x : \dfrac{16}{5}$
moltiplica tra loro i medi e gli estremi come segue:
$x×x = \dfrac{4}{15}×\dfrac{16}{5}$
$x^2 = \dfrac{64}{225}$
radice quadrata di ambo le parti:
$\sqrt{x^2} = \sqrt{\dfrac{64}{225}}$
$x= \pm\dfrac{8}{15}$