\[
\sin(\pi - \alpha) \cos\left(\alpha - \frac{\pi}{2}\right) - 2 \sin\left(\alpha - \frac{3}{2} \pi \right) \cos(2\pi - \alpha) + \frac{\tan\left(\frac{5}{2} \pi - \alpha \right)}{\cot(-\alpha)}
\]
\[
\sin(\pi - \alpha) \cos\left(\alpha - \frac{\pi}{2}\right) - 2 \sin\left(\alpha - \frac{3}{2} \pi \right) \cos(2\pi - \alpha) + \frac{\tan\left(\frac{5}{2} \pi - \alpha \right)}{\cot(-\alpha)}
\]
SIN(pi - α)·COS(α - pi/2) - 2·SIN(α - 3/2·pi)·COS(2·pi - α) + TAN(5/2·pi - α)/COT(-α) =
=SIN(α)·SIN(α) - 2·COS(α)·COS(α) + COT(α)/COT(-α)=
=SIN(α)^2 - 2·COS(α)^2 - 1= - 3·COS(α)^2