* |AB| = 6*r = 2*R ≡ r = R/3
* |BC| = 2*r = 2*R/3
* C(R + 2*R/3, 0) = (5*R/3, 0)
---------------
La semicirconferenza sia
* Γ ≡ (x^2 + y^2 = R^2) & (y >= 0)
la retta polare di C rispetto Γ è
* p ≡ x*5*R/3 + y*0 - R^2 = 0 ≡ x = 3*R/5
da cui
* (x = 3*R/5) & (x^2 + y^2 = R^2) & (y >= 0) ≡ D(3*R/5, 4*R/5)
* retta CD ≡ 3*x + 4*y = 5*R ≡ y = (5*R - 3*x)/4
* segmento CD ≡ (3*x + 4*y = 5*R) & (3*R/5 <= x <= 5*R/3)
* P(k, (5*R - 3*k)/4) & (3*R/5 <= k <= 5*R/3)
* H(k, 0) & (3*R/5 <= k <= 5*R/3)
* d = |CP| = (5/12)*√(9*k^2 - 30*k*R + 25*R^2)
* |OP|^2 = k^2 + (3*k - 5*R)^2/16
* |HP|^2 = (3*k - 5*R)^2/16
* r^2 = (R/3)^2
* |OP|^2 + (25/3)*|HP|^2 = 46*r^2 ≡
≡ k^2 + (3*k - 5*R)^2/16 + (25/3)*(3*k - 5*R)^2/16 = 46*(R/3)^2 ≡
≡ k^2 + (3*k - 5*R)^2/16 + (25/3)*(3*k - 5*R)^2/16 - 46*(R/3)^2 = 0 ≡
≡ (31*R - 15*k)*(11*R - 15*k) = 0 ≡
≡ (k = 31*R/15) oppure (k = 11*R/15)
---------------
* (k = 11*R/15) & (3*R/5 <= k <= 5*R/3) & (R > 0) ≡ (3*R/5 <= 11*R/15 <= 5*R/3) & (R > 0) ≡ VERO
* (k = 31*R/15) & (3*R/5 <= k <= 5*R/3) & (R > 0) ≡ (3*R/5 <= 31*R/15 <= 5*R/3) & (R > 0) ≡ FALSO
da cui
* d = |CP| = (5/12)*√(9*(11*R/15)^2 - 30*(11*R/15)*R + 25*R^2) =
= 7*R/6 = 7*3*r/6 = 7*r/2
che è proprio il risultato atteso.