Notifiche
Cancella tutti

equazioni con problemi

  

1

Due segmenti sono uno i $\frac{5}{3}$ dell'altro e la loro differenza è pari a $16 \mathrm{~cm}$. Determina la lunghezza dei due segmenti.
[ $24 \mathrm{~cm} ; 40 \mathrm{~cm}$ ]

IMG 4798

per favore aiutatemi 

Autore
4 Risposte



3

$a-b=16\Longleftrightarrow \dfrac{5}{3}b -b =16 \Longleftrightarrow b=24 \ cm$
$a-b = 16\Longleftrightarrow a-24 = 16\Longleftrightarrow a = 40 \ cm$

@giandomenico 👍👍



3

Due segmenti sono uno i 5/3 dell'altro e la loro differenza è pari a 16 cm. Determina la lunghezza dei due segmenti.
24 cm;40 cm ]

5a/3-a = 2a/3 = 16

a = 48/2 = 24 cm

b = 5a/3 = 5*8 = 40 cm 



3
image

============================================================

Visto il rapporto tra essi poni i due segmenti come segue:

segmento maggiore $=5x$;

segmento minore $= 3x$;

equazione conoscendo la differenza:

$5x-3x = 16$

$2x = 16$

$x= \frac{16}{2}$

$x= 8$

per cui:

segmento maggiore $=5x = 5×8 = 40~cm$;

segmento minore $= 3x = 3×8 = 24~cm$.

@gramor 👍👍



2

16/(5-3)=8   8*5=40cm   8*3=24cm



Risposta
SOS Matematica

4.6
SCARICA