Notifiche
Cancella tutti

[Risolto] Equazione parametrica

  

0

 Si dica per quali valori di b ∈ R l’equazione

3x^2+ bx + 2 = 0

ha esattamente due soluzioni distinte e positive.

 

Io ho posto il delta >= 0. Devo fare altro?

Autore
Etichette discussione
2 Risposte



1

E sì, che devi fare altro!
Intanto devi levare l'eguale, poi devi imporre che la radice minima sia positiva.
* 3*x^2 + b*x + 2 = 0 ≡
≡ x^2 - (- b/3)*x + 2/3 = 0 ≡
≡ x^2 - s*x + p = 0
* Δ = s^2 − 4*p = (- b/3)^2 − 4*2/3 = (b^2 - 24)/9
* √Δ = √(b^2 - 24)/3
* X2 = (s + √Δ)/2 = (- b + √(b^2 - 24))/6
* X1 = (s - √Δ)/2 = (- b - √(b^2 - 24))/6 > 0 ≡
≡ b <= - 2*√6
infatti
* (- (- 2*√6) - √((- 2*√6)^2 - 24))/6 = √6/3 ~= 0.8 > 0



2

Δ > 0 soluzioni distinte

Applica poi la regola di Cartesio

Quindi b<0 per avere due variazioni

{b^2 - 4·3·2 > 0

{b < 0

Quindi:

{b < - 2·√6 ∨ b > 2·√6

{b < 0

soluzione sistema: [b < - 2·√6]

@lucianop anche eguale

@lucianop grazie mille!



Risposta
SOS Matematica

4.6
SCARICA