Sin x + Cos x =√2.
Sin x + Cos x =√2.
$\sin x + \cos x = \sqrt{2}$
Posto $t=\tan \frac{x}{2}$
$\frac{2t}{t^2+1}+\frac{1-t^2}{t^2+1}=\sqrt{2}$
$2t+1-t^2=\sqrt{2}t^2 + \sqrt{2}$
$(\sqrt{2}+1)t^2-2t+\sqrt{2}-1=0$
$t= \frac{2 \pm \sqrt{4-4(\sqrt{2}+1)(\sqrt{2}-1)}}{2(\sqrt{2}+1)}$
$t= \frac{2 \pm \sqrt{4(1-(\sqrt{2}+1)(\sqrt{2}-1))}}{2(\sqrt{2}+1)}$
$t= \frac{2 \pm 2\sqrt{1-(\sqrt{2}+1)(\sqrt{2}-1)}}{2(\sqrt{2}+1)}$
$t= \frac{1\pm \sqrt{1-(\sqrt{2}+1)(\sqrt{2}-1)}}{\sqrt{2}+1}$
$t=\frac{1 \pm \sqrt{1-(2-1)}}{\sqrt{2}+1}$
$t= \frac{1 \pm 0}{\sqrt{2}+1}$
$t=\sqrt{2}-1$
Per le identità degli angoli doppi: $\tan 2\theta = \frac{2 \tan \theta}{1- \tan^2 \theta}$, quindi:
$\tan x = \frac{2(\sqrt{2}-1)}{1-(\sqrt{2}-1)^2}= \frac{2(\sqrt{2}-1)}{2\sqrt{2}-2}= \frac{2(\sqrt{2}-1)}{2(\sqrt{2}-1)}=1$
$x=\arctan 1 = \frac{\pi}{4} +2\pi k$
@gabo grazie, ma l’esercizio mi chiedeva di farlo con le formule parametriche