$2 \cos x \cdot \sin \left(x+\frac{2}{3} \pi\right)=\sin x(-\cos x-\sqrt{3} \sin x)+\tan x$
$2 \cos x \cdot \sin \left(x+\frac{2}{3} \pi\right)=\sin x(-\cos x-\sqrt{3} \sin x)+\tan x$
Riscrivo
2·COS(α)·SIN(α + 2/3·pi) = SIN(α)·(- COS(α) - √3·SIN(α)) + TAN(α) con
SIN(α + 2/3·pi) = SIN(α)·COS(2/3·pi) + SIN(2/3·pi)·COS(α)
SIN(α + 2/3·pi) = SIN(α)·(- 1/2) + √3/2·COS(α)
SIN(α + 2/3·pi) = √3·COS(α)/2 - SIN(α)/2
2·COS(α)·(√3·COS(α)/2 - SIN(α)/2) = SIN(α)·(- COS(α) - √3·SIN(α)) + TAN(α)
√3·COS(α)^2 - SIN(α)·COS(α) = - SIN(α)·COS(α) + TAN(α) - √3·SIN(α)^2
√3·COS(α)^2 = TAN(α) - √3·SIN(α)^2
√3·COS(α)^2 + √3·SIN(α)^2 = TAN(α)
√3 = TAN(α)---------> α = pi/3 + k·pi