1/LN(x) - 2·LN(x) ≤ -1
2·LN(x) - 1/LN(x) ≥ 1
C.E.
{LN(x) ≠ 0--> x ≠ 1
{x > 0
Quindi: 0<x<1 v x>1
LN(x) = t
2·t - 1/t - 1 ≥ 0
(t - 1)·(2·t + 1)/t ≥ 0
- 1/2 ≤ t < 0 ∨ t ≥ 1
- 1/2 ≤ LN(x) < 0 ∨ LN(x) ≥ 1
e^(- 1/2) ≤ x < 1 ∨ x ≥ e
Home
Profilo
Menu