$ \displaystyle\lim_{x \to \frac{\pi}{2}} tan^2 x = \displaystyle\lim_{x \to \frac{\pi}{2}} \frac{sin^2 x}{cos^2 x} = $
Poniamo $t = sin x \; ⇒ \; cos^2 x = 1 - sin^2 x = 1 - t^2 $
Se $x \to \frac{\pi}{2}$ allora $ t \to 1$
per cui
$ = \displaystyle\lim_{t \to 1} \frac{t^2}{1 - t^2} = \frac{1}{0^+} = +\infty $