Notifiche
Cancella tutti

Calcolo combinatorio

  

1
2571

Argomentare la risposta.

Autore
1 Risposta



1

a]

si tratta di un allineamento a panchina 7! = 5040

b]

Poniamo per ora i1i2i3 = I e e1e2e3 = E

le permutazioni di I - P - E sono 3! = 6.

Tuttavia i1i2i3 ammette 3! = 6 permutazioni interne e così e1e2e3.

Abbiamo quindi 6x6x6 = 216 modi.

c]

1 * 6! = 720

d]

é semplice

ora P deve stare al centro per cui si può verificare E P I oppure I P E

con identico sviluppo. Dunque 3! 1! 3! = 6*6 = 36 deve essere moltiplicato per 2

e ne risulta 72.

 

Nota - alcune volte, come quando i bambini vogliono sedere consecutivi sulla giostra,

conviene raggruppare un insieme fisso fingendo che sia un unico elemento e poi andare

a vedere se ammette permutazioni interne.

 



Risposta
SOS Matematica

4.6
SCARICA