Numero 50
Numero 50
A [-2, 1]
B [2, -2]
C [4, 4]
ΑΒ = √((2 + 2)^2 + (-2 - 1)^2) = 5
ΒC = √((4 - 2)^2 + (4 + 2)^2) = 2·√10
ΑC = √((4 + 2)^2 + (4 - 1)^2) = 3·√5
perimetro=5 + 2·√10 + 3·√5 = 18.03 circa
==========================================================
50)
Perimetro del triangolo ABC con i dati: $\small A(-2; 1); B(2; -2); C(4; 4):$
$\small 2p_{ABC}= \overline{AB}+\overline{BC}+\overline{AC}$
$\small2p_{ABC}=\sqrt{\left(A_x\small-B_x\right)^2+(A_y-B_y)^2}+\sqrt{(B_x-C_x)^2+(B_y-C_y)^2}+\sqrt{(A_x-C_x)^2+(A_y-C_y)^2}$
$\small 2p_{ABC}= \sqrt{(-2-2)^2+(1-(-2))^2}+\sqrt{(2-4)^2+(-2-4)^2}+\sqrt{(-2-4)^2+(1-4)^2}$
$\small 2p_{ABC}= \sqrt{(-4)^2+(1+2)^2}+\sqrt{(-2)^2+(-6)^2}+\sqrt{(-6)^2+(-3)^2}$
$\small 2p_{ABC}= \sqrt{16+3^2}+\sqrt{4+36}+\sqrt{36+9}$
$\small 2p_{ABC}= \sqrt{16+9}+\sqrt{40}+\sqrt{45}$
$\small 2p_{ABC}= \sqrt{25}+2\sqrt{10}+3\sqrt{5}$
$\small 2p_{ABC}= 5+2\sqrt{10}+3\sqrt{5}$ $\small \approx{18,033}.$
46
AB = 3
BC = 2√5
AC = √17
perimetro 2p = 3+2√5+√17 = 11,60 cm
47
AB = 2√10
BC = √13
AC = 5
perimetro 2p = 2√10+5+√13 = 14,93
48
AB = 7
BC = √29
AC = 5√2
perimetro 2p = √29+5√2+7 = 19,46
49
AB = √22,25
BC = √41
AC = √70,25
perimetro 2p = √22,25+√41+√70,25 = 19,50
50
AB = 5
BC = 2√10
AC = 3√5
perimetro 2p = 5+2√10+3√5