=======================================================
Rombo di base:
diagonale incognita $\small \dfrac{2×\cancel{96}^6}{\cancel{16}_1} = 2×6 = 12\,cm;$
lato $\small l=\sqrt{\left(\dfrac{D}{2}\right)^2+ \left(\dfrac{d}{2}\right)^2} = \sqrt{\left(\dfrac{16}{2}\right)^2+ \left(\dfrac{12}{2}\right)^2} = \sqrt{8^2+6^2} = 10\,cm$ (teorema di Pitagora);
perimetro $\small 2p= 4×l =4×10 = 40\,cm.$
Prisma:
area di base $\small Ab= 96\,cm^2;$
perimetro di base $\small = 40\,cm;$
altezza = lato del rombo $\small h= l= 10\,cm;$
area laterale $\small Al= 2p×h = 40×10 = 400\,cm^2;$
area totale $\small At= Al+2×Ab = 400+2×96 = 592\,cm^2.$
diagonale d1 = 16 cm
area A = 96 cm^2
diagonale d2 = 2A/d1 = 192/16 = 12 cm
lato L = √(d1/2)^2+(d2/2)^2 = √8^2+6^2 = 10 cm
perimetro 2p = 4*L = 40 cm
altezza h = L = 10 cm
area laterale Al = 2p*h = 40*10 = 400 cm^2
area totale At = Al+2Ab = 400+96*2 = 592 cm^2