Si dividono i coefficienti numerici;
si sottraggono gli esponenti delle potenze di uguale base,
esempio a^10 : a^2 = a^8; x^7 : x^5 = x^2.
- 81/2 a^10 x^7 : (- 27 a^2 x^5) = + (3/2) a^8 x^2;
- 3/4 a^12 x^8 : (- 27 a^2 x^5) = + 3/(4 * 27) * a^10 x^3 =
= + (1/36) a^10 x^3 ;
+ 9/2 a^8 x^6 : (- 27 a^2 x^5) = - 9 /(27 * 2) a^6 x^1 =
= - (1/6) a^6 x.
Risultato della divisione:
+ (3/2) a^8 x^2 + (1/36) a^10 x^3 - (1/6) a^6 x.
@giuly123 ciao
==========================================================
$\small \left(-\dfrac{81}{2}a^{10}x^7-\dfrac{3}{4}a^{12}x^8+\dfrac{9}{2}a^8x^6\right) : \left(-27a^8x^5\right)=$
$\small = \dfrac{-\dfrac{81}{2}a^{10}x^7}{-27a^8x^5}+\dfrac{-\dfrac{3}{4}a^{12}x^8}{-27a^8x^5}+\dfrac{\dfrac{9}{2}a^8x^6}{-27a^8x^5}=$
$\small = -\dfrac{\cancel{81}^3}{2}·-\dfrac{1}{\cancel{27}_1}·\dfrac{a^{10}x^7}{a^8x^5}+\left(-\dfrac{\cancel3^1}{4}·-\dfrac{1}{\cancel{27}_9}\right)·\dfrac{a^{12}x^8}{a^8x^5}+\left(\dfrac{\cancel9^1}{2}·-\dfrac{1}{\cancel{27}_3}\right)·\dfrac{\cancel{a^8}x^6}{\cancel{a^8}x^5}=$
$\small = \dfrac{3}{2}a^{10-8}x^{7-5}+\left(-\dfrac{1}{4}·-\dfrac{1}{9}\right)·a^{12-8}x^{8-5}+\left(\dfrac{1}{2}·-\dfrac{1}{3}\right)·x^{6-5}=$
$\small = \dfrac{3}{2}a^2x^2+\dfrac{1}{36}a^4x^3-\dfrac{1}{6}x$