$(\frac{2}{5} x^3 y z^5 + \frac{3}{10} x^3 y z^5- \frac{3}{2} x^3yz^5)^3$
Facciamo un raccoglimento totale, raccogliamo $x^3yz^5$, allora mettiamo le parentesi quadre:
$[x^3yz^5(\frac{2}{5}+\frac{3}{10}-\frac{3}{2})]^3$
$[-\frac{4}{5}x^3yz^5]^3$
$-\frac{64}{125}x^9y^3z^{15}$
Ecco fatto!
(x^3*y*z^5*(2/5+3/10-3/2))^3
(x^3*y*z^5*(4+3-15)/10)^3
(x^3*y*z^5*-4/5)^3
-64/125*x^9*y^3*z^15
===========================================================
$\left(\dfrac{2}{5}x^3yz^5+\dfrac{3}{10}x^3yz^5-\dfrac{3}{2}x^3yz^5\right)^3 =$
$= \left(\dfrac{4+3-15}{10}x^3yz^5\right)^3 =$
$= \left(-\dfrac{\cancel8^4}{\cancel{10}_5}x^3yz^5\right)^3 = $
$= \left(-\dfrac{4}{5}x^3yz^5\right)^3 = $
$= -\dfrac{4^3}{5^3}x^{3·3}y^3z^{5·3} = $
$= -\dfrac{64}{125}x^9y^3z^{15} $