Grazie mille a che mi aiuta
Devi mettere un esercizio per volta!!! Vedi regolamento. Ti faccio l'ultima...
no 182:
radicequadrata[(6/5 x 2/3 + 1/4 - 1/4 x 3/5) - 13/50] =
= radicequadrata[(4/5 + 1/4 - 3/20) - 13/50]; {mcm(5; 4; 20) = 20}.
= radicequadrata[(16/20 + 5/20 - 3/20) - 13/50] =
= radicequadrata[18/20 - 13/50] ; { 18/20 = 9/10}.
= radice[9/10 - 13/50] = radice[45 /50 - 13/50] =
= radice[32/50] = (32/50 si semplifica per 2);
radice[16/25] = 8/5.
@sarannn ciao
=====================================================
$\small \sqrt{\left(\dfrac{9}{4}-\dfrac{13}{15}-\dfrac{17}{18}-\dfrac{1}{20}\right)×\dfrac{7}{2}}=$
$\small =\sqrt{\left(\dfrac{405-156-170-9}{180}\right)×\dfrac{7}{2}}=$
$\small =\sqrt{\dfrac{\cancel{70}^7}{\cancel{180}_{18}}×\dfrac{7}{2}}=$
$\small =\sqrt{\dfrac{7}{18}×\dfrac{7}{2}}=$
$\small =\sqrt{\dfrac{49}{36}}= \dfrac{7}{6}$
===========================================================
$\small \sqrt{\left(\dfrac{35}{24}-\dfrac{11}{16}-\dfrac{5}{9}\right)×\left(1-\dfrac{30}{31}\right)}=$
$\small =\sqrt{\left(\dfrac{210-99-80}{144}\right)×\left(\dfrac{31-30}{31}\right)}=$
$\small =\sqrt{\dfrac{\cancel{31}^1}{144}×\dfrac{1}{\cancel{31}_1}}=$
$\small =\sqrt{\dfrac{1}{144}×\dfrac{1}{1}}=$
$\small =\sqrt{\dfrac{1}{144}}= \dfrac{1}{12}$