un trapezio rettangolo è circoscritto. sapendo che l'area e 144pigreco cm e che il lato obliquo supera di 5 cm i 5/6 dell'altezza, calcola perimetro e area del trapezio.
gentilmente riuscite ad aiutarmi con passaggi operazioni e disegno?grazie
un trapezio rettangolo è circoscritto. sapendo che l'area e 144pigreco cm e che il lato obliquo supera di 5 cm i 5/6 dell'altezza, calcola perimetro e area del trapezio.
gentilmente riuscite ad aiutarmi con passaggi operazioni e disegno?grazie
Α = pi·r^2---> Α = 144·pi---> r = √(144·pi/pi) = 12 cm
h = 2·r = 2·12 = 24 cm
l = 5/6·h + 5= 5/6·24 + 5 = 25 cm
h + l = b + Β
b + Β = 49 cm
Β - b = √(l^2 - h^2) = √(25^2 - 24^2) = 7 cm
{Β - b = 7
{Β + b = 49
risolvo: [b = 21 cm ∧ Β = 28 cm]
perimetro=2·49 = 98 cm
area= 1/2·49·24 = 588 cm^2
Area cerchio = 144 π cm^2;
Area cerchio = π r^2;
l'altezza del trapezio CH, corrisponde al diametro del cerchio inscritto;
raggio del cerchio:
r = radice quadrata(Area / π);
r = radice(144 π / π) = radice(144) = 12 cm;
diametro = 2 * r;
CH = 2 * 12 = 24 cm (altezza del trapezio = h);
CH = AD;
Lato obliquo BC:
BC = h * 5/6 + 5 ;
BC = 24 * 5/6 + 5 = 20 + 5 = 25 cm; lato obliquo;
un quadrilatero è circoscrivibile se la somma dei lati opposti è uguale a quella degli altri due.
AD e BC sono opposti; (altezza h + lato obliquo);
AD + BC = 24 + 25 = 49 cm;
le basi sono gli altri due lati opposti;
AB + CD è somma delle due basi; (B + b).
AB + CD = 49 cm;
Area trapezio = (B + b) * h / 2;
Area = 49 * 24 / 2 = 588 cm^2; (area trapezio);
Perimetro = 49 + 49 = 98 cm.
@erikavolpi ciao
Possiamo trovare anche la misura delle due basi, (se ti serve):
HB = radicequadrata(25^2 - 24^2);
HB = radice(49) = 7 cm;
Base maggiore = base minore + HB;
AB = CD + HB;
AB = CD + 7 cm;
AB + CD = 49 cm;
(CD + 7) + CD = 49;
Togliamo HB = 7 dalla somma, restano due lati uguali a CD, cioè il doppio di CD;
2 * CD = 49 - 7 = 42 cm;
CD = 42 / 2 = 21 cm; (base minore);
AB = 49 - 21 = 28 cm;
Perimetro = 28 + 21 + 24 + 25 = 49 + 49 = 98 cm.
Ciao.
Un trapezio rettangolo è circoscritto. Sapendo che l'area del cerchio è 144 pigreco cm e che il lato obliquo supera di 5 cm i 5/6 dell'altezza, calcola perimetro e area del trapezio.
gentilmente riuscite ad aiutarmi con passaggi operazioni e disegno?
========================================================
Raggio del cerchio $\small r= \sqrt{\dfrac{A}{\pi}} = \sqrt{\dfrac{144\cancel{\pi}}{\cancel{\pi}}} = \sqrt{144} = 12\,cm;$
lato retto = altezza $\small lr=h= 2·r = 2×12 = 24\,cm;$
lato obliquo $\small lo= \dfrac{5}{6}h+5 = \dfrac{5}{\cancel6_1}·\cancel{24}^4+5 = 5·4+5 = 20+5= 25\,cm;$
sapendo che i quadrilateri circoscritti a circonferenze hanno la somma di due lati opposti uguale alla somma degli altri due, fai:
lato retto + lato obliquo $\small lr+lo = 24+25 = 49\,cm;$
per cui:
base maggiore + base minore $\small B+b= 49\,cm;$
infine:
perimetro $\small 2p= B+b+lr+lo = 49+49 = 98\,cm;$
area $\small A= \dfrac{(B+b)·h}{2} = \dfrac{49·\cancel{24}^{12}}{\cancel2_1} = 49×12 = 588\,cm^2.$