3·x/(x + 2) + 2·x/(x - 7) = (5·x + 6)/(x + 2)
C.E. (x + 2)·(x - 7) ≠ 0---> x ≠ 7 ∧ x ≠ -2
quindi:
3·x·(x - 7) + 2·x·(x + 2) = (5·x + 6)·(x - 7)
(3·x^2 - 21·x) + (2·x^2 + 4·x) = 5·x^2 - 29·x - 42
5·x^2 - 17·x - (5·x^2 - 29·x - 42) = 0
12·x + 42 = 0--->x = - 7/2
2x /(x-7) = (2x+6)/(x+2)
2x^2+4x = 2x^2+6x-14x-42
2x^2 si semplifica
42 = 6x-14x-4x
x = -42/12 = -7/2
...non così difficile, al fine 😉
======================================================
$\dfrac{3x}{x+2}+\dfrac{2x}{x-7}=\dfrac{5x+6}{x+2}$ $(mcm=(x+2)(x-7)$
$3x(x-7)+2x(x+2)=(5x+6)(x-7)$
$3x^2-21x+2x^2+4x = 5x^2-35x+6x-42$
$5x^2-17x=5x^2-29x-42$
$\cancel{5x^2}-\cancel{5x^2}-17x+29x = -42$
$12x = -42$
$\dfrac{\cancel{12}x}{\cancel{12}} = \dfrac{-\cancel{42}^7}{\cancel{12}_2}$
$x= -\dfrac{7}{2}$