Consideriamo il problema di individuare una curva esponenziale che si adatti alla coppia di osservazioni
(x1, y1) e (x2, y2)
Posto y = A * B^x si ottiene il sistema
{ y1 = A B^x1
{ y2 = A B^x2
e dividendo
B^(x2 – x1) = y2/y1
B = (y2/y1)^(1/(x2 – x1))
e quindi dalla prima equazione
A = y1 * B^(-x1) = y1 * (y2/y1)^(-x1/(x2 – x1))
Queste due formule possono essere implementate su Octave.
Esempio
C1 = (2,5) e C2 = (7.5, 75)
B = (75/5)^(1/(7.5 – 2)) = 1.6362
A = 5*1.6362^(-2) = 1.8677
y = 1.8677 * 1.6362^x