Eventi aleatori e concerto
“Nadia é andata ad un concerto che prevede 30 canzoni presentate in ordine del tutto casuale.
Poiché può rimanere solo un’ora, ascolterà 10 brani e poi andrà via. Sapendo che quelli che le piacciono particolarmente sono 10, determinare la probabilità che :
a) la parte interessante del concerto inizi dopo che Nadia se n’é andata ;
b) la parte interessante del concerto inizi subito dopo che Nadia se n’é andata”.
Il problema é una istanza del seguente pattern generale :
“In un gruppo di N elementi m sono contrassegnati. Se vengono estratti in ordine casuale, qual é la probabilità che
il primo dei contrassegnati si presenti al posto (k o più) k ? ”
L’evento descritto in A si verifica se nessuno degli m elementi contrassegnati in un gruppo di numerosità
N >= m capita nei primi k – 1 e quindi la sua probabilità é
Pr [A] = C(N-m, k – 1)*C(m,0)/C(N, k-1)
e per N = 30, k = 11, m = 10
Pr [A] = C(30-10, 11-1)/C(30, 10) = C(20,10)/C(30,10) = 6.15 * 10-3
Per il punto B invece
Pr [ B ] = Pr [ nessuna fra le prime k – 1 & 1 al posto k ] =
= C(N-m, k-1)/C(N, k – 1) * m/(N – k + 1)
(N – k + 1 sono quelle rimaste )
e quindi Pr [ B ] = 6.15 * 10-3 * 10/(30 – 11 + 1) = 6.15 * 10-3 * 10/20 = 3.07 * 10-3
o 1/325.