Ogni retta ha un coefficiente angolare che determina la sua pendenza rispetto all’asse delle ascisse: qual รจ la formula per calcolare il coefficiente angolare della retta?
Scopri anche come scrivere l’equazione di una retta in forma implicita e in forma esplicita.
Appunti
Il coefficiente angolare ti crea qualche problema? Si avvicina la verifica sul piano cartesiano e non hai capito come scrivere l’equazione di una retta parallela a uno dei due assi? Non ti รจ chiara la differenza fra forma esplicita e forma implicita di una retta? Niente paura! In questa lezione trovi le risposte a tutte le tue domande!
In questa lezione imparerai:
- Equazione di una retta parallela ad un asse cartesiano: formule, dimostrazioni e casi particolari;
- Retta generica in forma esplicita e implicita: formula, dimostrazione e passaggio da una formula all’altra;
- Coefficiente angolare: come trovare il coefficiente angolare conoscendo due punti e casi particolari.
Prerequisiti per imparare l’equazione generale della retta
I prerequisiti per imparare l’equazione generale della retta sono:
- rette sul piano cartesiano
- equazioni
- funzioni polinomiali.
Equazione di una retta parallela ad un asse
Rette parallele all’asse $y$
Le rette parallele all’asse $y$ sono caratterizzate da punti che hanno tutti la stessa ascissa. L’equazione generale รจ:
$x=h \operatorname{con} h \in R$
Rette parallele all’asse $x$.
Le rette parallele all’asse $x$ sono caratterizzate da punti che hanno tutti la stessa ordinata. L’equazione generale รจ:
$y=k \operatorname{con} k \in R$
Forma implicita ed esplicita di una retta
Ma come si scrive l’equazione di una generica retta?
L’equazione di una retta qualsiasi nel piano cartesiano รจ:
$$
y=m x+q
$$
Per ricavarla basta pensare alla traslazione di una qualsiasi retta passante per l’origine.
Ogni retta del piano non parallela all’asse $y$ รจ rappresentata da una equazione del tipo: $y=m x+$ $q$ dove:
- $q$ : termine noto o intercetta all’origine, รจ l’ordinata del punto di intersezione della retta con l’asse $y$;
- $m$ : coefficiente angolare, l’inclinazione della retta rispetto all’asse $x$.
Se $q=0$ otteniamo la retta passante per l’origine.
Se $m=0$ otteniamo una retta parallela all’asse $x$ del tipo $y=q$.
Potresti anche scrivere la retta con l’equazione in forma implicita, in cui nessuna delle due variabili $x$ e $y$ รจ scritta in funzione dell’altra.
ร un’equazione in cui $a, b, c$ sono numeri reali $(a e b$ non contemporaneamente nulli): $a x+b y+c=0$.
Come calcolare il coefficiente angolare
II coefficiente angolare si ottiene come rapporto tra la differenza delle ordinate e la differenza delle ascisse di due punti che appartengono ad una certa retta.
Presi due punti $A\left(x_A ; y_A\right)$ e $B\left(x_B ; y_B\right)$ appartenenti ad una stessa retta il coefficiente angolare si trova anche come: $m=\frac{\Delta y}{\Delta x}=\frac{y_B-y_A}{x_B-x_A}$
Se due punti hanno la stessa ordinata allora $m=0$; Se due punti hanno la stessa ascissa si annullerebbe il denominatore, quindi la frazione perde di significato. Ciรฒ significa che non posso trovare con questa formula il coefficiente angolare delle rette parallele all’asse $y$.